正則行列と逆行列
こんにちは、おぐえもん(@oguemon_com)です。
前回の記事では、行列同士の計算方法について解説しました。
さて、高校数学において、ある数(スカラー)に対してを逆数と呼び、これをある数に対して掛け合わせることで、割り算と同等の効果をもたらすことができることを学習したと思います。実は、行列についても、乗算をすると割り算をしたみたいになる「逆行列」という行列があります。今回は逆行列に関するお話をしたいと思います。
ここで、正則行列や逆行列は、正方行列(行数と列数が同じ行列)について適用される話であることに注意しましょう。つまり長方形の行列については考えません。
正則
正方行列について、掛け合わせると単位行列になるシチュエーションを考えます。
次正方行列について、
となる次正方行列が存在するとき、は正則行列という。
例えば、
なので、
は正則行列ということができます。もちろん、視点を変えると、掛け合わせた相方もまた正則行列です。
わざわざ「正則行列」なんて言葉が用意されていることから察せるように、正方行列は必ずしも正則行列じゃないのですよね。
例えば、
はどうあがいても正則ではありません。(掛けてになる行列を頑張って探しても無駄ですよ笑)
このように、正則行列である条件、正則行列でない条件などについては後の記事で扱います。
逆行列
正則行列に掛け合わせると E になる行列を逆行列と言います。要は正則行列の相方です。
次の正則行列について、
となる次正方行列を逆行列といい、で表す。
ちなみに、逆行列は正則行列 1 つにつき、1 つしかありません。
次の正則行列に対して、複数の逆行列が存在すると仮定し、その中の 2 つをとする。
この時、とが同時に成り立つ。
というわけで、以外の逆行列として挙げた行列は結局と同じものなので、逆行列はしかない。
逆行列は、行列をにする強い存在で、かなり重要な行列です。何記事かあとで、逆行列の求め方を扱います。
逆行列の性質
逆行列にはいくつかの性質を持ちます。
まず、
とが次の正則行列ならば、も正則で、
が成立します。括りをバラそうと思うと、掛け算の順番が入れ替わるのですね。
実際にとの掛け算を試みると、内側から次々とが錬成されて消えていくのがわかります。
【右から掛けてみる】
【左から掛けてみる】
そして、
の逆行列は
という性質も持ちます。これはもはや視点を変えただけの話です。(正則行列の逆行列もまた正則行列だし、その逆行列はもとの正則行列)
あえて式を書くなら
より、の逆行列はです。
おわりに
今回は、逆行列とは何なのかや、逆行列がもつ性質について学習しました。
次回の記事では、少し話を変えて、注意すべき行列の性質を、スカラーとの比較を交えながら解説したいと思います。
逆行列を求めるための計算は超複雑なのですが、これを瞬時に求めてくれる Web アプリを開発しました!逆行列の性質の確認や、レポートや試験の対策などにお使いください〜!